
EF
see-GEE
dee-AY
ee-BEE
EF see-GEE dee-AY ee-BEE
F C G D A E B
You should include 1/1 in the list, and I think you mean they don't require sharps or flats. They certainly require comma accidentals — for 5/4, 7/4, 11/8 and 13/8.cmloegcmluin wrote: ↑Thu Mar 26, 2020 2:08 am This chunk is a godsend for me. That's so cool that it works out that way for G (I worked it out and I assume what you mean is that none of 3/2, 5/4, 7/4, 9/8, 11/8, or 13/8 require accidentals when G is 1/1, ...
It's fairly easy to prove it doesn't work for any other 1/1 nominal (with that particular choice of notational commas for the primes 5, 7, 11, 13) by induction on the chain of fifths. It uses every bare nominal, F C G D A E B. So every shift of one position on the chain-of-fifths adds another sharp as you go fifthward, or another flat as you go fourthward.but you wouldn't necessarily get that for other nominals as 1/1... you don't get it for the couple others I checked).
It depends what you mean by "this". In any case, it wouldn't hurt to read Doty.Where can I learn more of this? I'm embarrassed to say I haven't read Doty's Just Intonation Primer yet.
No. If you're willing to choose any of C G D A E to notate your 1/1, there's no reason to go outside of the range 400 Hz to 480 Hz for 1/1. That's ±10%. That's because the largest step between those nominals is a Pythagorean minor third (A:C or E:G), which is 27:32 = 1.185, and 480/400 = 1.2.I've heard about setting A to something else than 440 Hz, but usually it's pretty close to 440 Hz. Is the choice of letter really just all about the accidentals? Meaning I could set it to A if that gave the nicest accidentals, but if I actually wanted my piece to be in a different register than that I could just say that A is something crazy like 311.13 Hz, and most performers would be okay with that?
Whether performers are OK with an A that differs from 440 Hz depends on the nature of their instrument — whether it is made for that reference, or how easily it can be retuned (and possibly whether the performer is cursed with absolute pitch perception

Sure. That's what's usually done.Cool idea [using a 3-comma accidental]. Why not just keep adding conventional sharp signs though? Wouldn't it be fairly intuitive to indicate a triple sharp like?
You've got it wrong.I feel like I'd rather see that thanmyself.












































































But it's probably not such a great idea, since it uses an accented symbol. And the symbol is based on the 5-comma symbol. The 5-nesses of the core and the accent cancel each other out.
If it aint broke, don't fix it. Leave it.The Sagittal JI calculator spreadsheet does allow setting the double-flats and double-sharps as 1/1, and seems to work alright. Is that something I should fix then, when I do the work to have it help you out with choosing the most conventional options it suggests? Or do you think I may as well leave it that way?
Are you confusing the prime factor notation (which is the topic of this thread) with the Olympian notation (which is what you get from George's spreadsheet)? The Olympian notation has multiple symbols for notating 13, the prime factor notation has only one.Sorry, I should have given an example of what I mean.is the multi-sagittal for 13. If I go to the Sagittal JI Calculator and put in 13, leaving C as the default 1/1, indeed I get
as my result (on an A, and technically it's
but let's just ignore the diacritics for now). G and D as 1/1 also agree with
. But if you use A as your 1/1,
is not one of the options; the only option with a bare nominal is F, and the accidental is
. E and B also give this result. (F agrees with C, G, and D). So it's split roughly evenly, 4 against 3. Was
preferred because 4 > 3? Or is there something deeper I'm not getting yet?
Or are you just asking (slightly off-topic) why George's spreadsheet offers 8:13 as D :






The reason is, that George believed that one should not combine an apotome symbol with another symbol pointing in the opposite direction if that symbol is larger than a half-apotome. It also stems from the primacy of the pure Sagittal (at least in George's mind). It enforces only one mixed combination for every pure sagittal symbol.
But in the prime-factor notation you have no choice. There is only one symbol for prime 13




Let's use the example of prime 13. Why did we chooseI definitely don't understand the statement "We're just minimising the absolute value of the offset from 1/1 along the chain of fifths".






But there is definitely an argument to be had, that the "average" choice of 1/1 is closer to G, in which case there would be fewer sharps and flats on average if we allow the 3 exponents of the prime commas to range from -4 to +7 instead of -5 to +6. This doesn't affect the choice for 13 (or any primes below it), but it does affect 17. It would lead us to prefer the 17-kleisma


I think it would be great if the choice between 17C and 17k was a parameter for the prime factor notation calculator, and hence the choice between -5 to +6 and -4 to +7.
That's good to know. I'm sure there are many others like you. And it puts you in a good position to explain the Sagittal system to others, once you feel you understand it sufficiently yourself.[Regarding factors of 3] So... I do think there may be some fundamental inner workings of Sagittal (and extended H-E systems in general) that I don't quite intuit yet. I'll try to take you through my experience so far. Keep in mind that I don't have a strong musical background -- I've been writing music as long as I can remember, but I've never mastered an instrument or studied it academically.
That's priceless, for helping me understand where you're coming from.
- Ah, interesting. Commatic alterations. That makes sense. Because each of the primes has a different deviation from standard tuning.
- Okay, each comma can have a bunch of powers of 2 in it. Fine, I understand octave equivalency.
- ...Wait, what...? These commas have a bunch of powers of 3 in them, too! I don't like that. I almost never use fifths. They also aren't pitch class equivalent, so now I'll be limited by that nature. And I'll probably have to memorize the circle of fifths, etc...
- (Ignores JI notation systems for many years, focusing on writing music for computers that don't need to deal with all this nonsense)
- (Decides he'd like to have some of his music performed by humans, starts trying to figure out JI notation systems again)
- I still don't really understand the powers of 3. They seem to magically work out a lot of the time
You only have to memorise FCGDAEB. There's nearly always a scrap of paper on my desk somewhere with a chain of at least 35 fifths written on it for counting purposes.
Even though Yer tuning doesn't have any pure fifths, it has some near-misses, of 692c, 711c and 718c. Pure fifths are such strong attractors, it could be useful, in effect, to have the notation tell you where they are so you can avoid them.
Oh sure. We've got to get you up to understanding the reasons behind the instructions. Not just following them blindly. I'm sure it will click soon and you'll realise it's simpler than you thought.Part of the reason I included that snippet of me working out 11*13, if only semi-consciously, is that I expected you might say something like this: that I should have just known that right off the bat. But I don't think I get yet why those powers of 3 just work themselves out. I still feel like I have to do it manually. And that's why I'm so uncomfortable with the idea of anything other than -5 to +6 fifths and just following instructions someone who knows what they're doing has told me will work. Either that or I really do just need to learn this by working out enough examples until things click (or by implementing it in code, although I'd rather work out the bugs in my understanding before I try programming them... there'll be room enough for bugs later in just the implementation errors!).
One thing you've made me realise is that we really should have the exponent of 3 (and hence the offset along the chain of fifths) shown for each of those prime commas in the first post of this topic.
Dave Ryan told me what to do, but I made the chart. But the interesting thing is that he doesn't agree with -5 to 6 or -6 to 6. In fact he doesn't place any a priori limits like that, but has a complicated algorithm for deciding the best offset for any prime. As mentioned, he prefers +7 for prime 17. That's the first prime where we disagree. (Although I could easily be convinced to go with +7 too).I'm trying to figure out all the thoughts behind the sentences: "It's not a convention to go from -5 to 6. It's not even a convention to limit it to 12 Pythagorean notes. It just seemed like a good idea to George and I." The chart above seems to have been provided by a guy named Dave Ryan.
It is absolutely not codified in Sagittal in general. It is mentioned for the first time in the first post of this topic (actually as officially -6 to +6, but defacto -5 to +6).Did I miss somewhere where this concept of -5 to +6 fifths is codified for Sagittal in general?
Yes! You got it.It seems like it's only relevant to figuring out these multi-sagittals.
Yes.Otherwise you're free to use whichever sharped and flatted nominals you want.
No. They should work out any way. They are exactly the exponent of 3 in their monzos. You just seem to have made an arithmetic error for the case of 13 above.My sense is that these multi-sagittal might only "work out" with respect to the count of 3's in their monzos as long as you followed this exact -5 to +6 chain.
Where are you getting these counts of three? 3⁻¹ for 11, 3³ for 13? They don't seem to correspond to the monzos foror
, which have powers of 1 and -5, respectively, not -1 and 3.
The symbol


The symbol


For homework
